cn( z, m )

The Jacobi elliptic cosine function of z and parameter m in Math. Defined as the cosine of the Jacobi amplitude:

cn(u|m)=cos[am(u|m)]

Note that all Jacobi elliptic functions in Math use the parameter rather than the elliptic modulus k, which is related to the parameter by m=k2.

Real part on the real axis:

m
-5.0 -2.5 2.5 5.0 -0.75 -0.50 -0.25 0.25 0.50 0.75

Imaginary part on the real axis is zero.

Real part on the imaginary axis:

m
-5.0 -2.5 2.5 5.0 -5.0 -2.5 2.5 5.0

Imaginary part on the imaginary axis is zero.

Real part on the complex plane:

m

Imaginary part on the complex plane:

m

Absolute value on the complex plane:

m

Related functions:   am   sn   dn

Function category: elliptic functions